

Fue	l units		
	Fuel Type	Unit	
	#2 oil	Gallon	
	#4 oil	Gallon	
	#6 oil	Gallon	
	Nat. Gas	Therm or CCF	
	Propane liq. gas	Gallon	
	Electricity	kWh	
LANDWARK		Steven Winter Ass	ociates, Inc.

Fuel comparison					
	Fuel Type	Unit	Equiv. BTU		
	#2 oil	1 Gallon	138,000		
	#4 oil	1 Gallon	145,000		
	#6 oil	1 Gallon	150,000		
	Nat. Gas	1 Therm	100,000		
	Propane liq. gas	1 Gallon	91,000		
	Electricity	1 kWh	3412		
LA H CO	NE COMPETE DE MARCH DE MARCH DE COMPETE				

Highlight the summer	111499 112799	2930 2930
(non-neating) months	121199 121999 122899	2932 3417 2725
Find the total usage between the	011200	2915
summer periods on a daily basis	012600 020400 021200	2928 2911 2916
Average daily oil usage in summer =	021900 030500	2915 3427
2949 +2952 +3431 = 9332/122 days	040700	2929
= 76.5 gallons/day x 365=	050600 060700 071500	2931 2950 2949
27,922.5 gallons oil for	100700 110600	<u>3431</u> 3332
DHW use/60,355 =	112400	2925
46.3% oil usage for DHW		00,335
60,355 - 27,922.5 =		
32,432.5 gailons of oil for heating		
	Stavon Winter A	

 Cumulative HDD's can be found at <u>www.weather.gov</u> then by clicking on your city on the map

In an average winter, NYC has 4888 Heating Degree Days (HDD)			
<u>Site (Countywide Averages)</u> NYC Yonkers Albany Pennsylvania (Statewide) Buffalo Montreal	HDD 4888 5497 6750 5700-6100 6922 9350		
HDD notes the severity of w location. The more HDD's, is.	reather in a particular the colder the weather		
	The INSTITUTE for SUSTAINABLE CITIES		

R	Rent vs. fuel usage					
	For a TWO BEDROOM Apartment that is 660 SQ. FT. , and rents for \$1,000/month .					
	Annual	Annual Fuel	Annual Fuel	Annual Fuel		
	Rent	Use	Cost	Use as % of		
	Dollars	Therm/ft ²	(at \$1.85 per therm)	Annual Rent		
	12,000	.5	611	5.0%		
	12,000	1	1,221	10.0%		
	12,000	2	2,442	20.0%		
	12,000	4	4,884	40.0%		
	WARKWEST!	CPC	The INSTITUTE for SUSTAINABLE CITIE off OWNERS OF NON	Steven Winter Associat	es, Inc.	

Basic principles derived from the 1^{st} law and 2^{nd} law

- Heat always flows from Hot to Cold.
- Steam travels from HIGH pressure to LOW pressure
- Moisture travels from MORE to LESS
- HOT AIR rises : and <u>NOT</u> heat

CDC

LANDWARK WEST

Stack effect

LANDWARKWEST!

- Stack effect is the pressure driven flow produced by convection (the tendency of warm air to rise).
- The stack effect exists whenever there is an indoor-outdoor temperature difference
- It becomes stronger as the temperature difference increases.
- As heated air escapes from upper levels of the building, indoor air moves from lower to upper floors,

他的

 Replacement outdoor air is drawn into opening at the lower levels of buildings.

Typical percentage of total envelope area for a 2 to 5 story multifamily building:

 Walls 	60%
Roof	20%
 Windows 	15%
Exposed basement	3%
Doors	2%
Can vary considerabl	y with building type
	The INSTITUTE for SUSTAINABLE CITILS

LANDWARK WEST

Showers

LANDWARKWEST!

- Some measured at over 12 gallons per min (gpm)
- Many low-flow models (2-2.5 gpm) are awful
- Many low flow models are not low flow
- No consistent standards except (2-2.5 gpm)
- Consult Consumer Reports

- Install a few and check reaction
- Don't install one that you haven't used at your own house

Consider electronic mixing valves:

Safer

LANDMARK WEST

- Accurate, lower temperatures
- Help reduce scald problems
- Good ones operate across various pressure settings
- Fail in closed (cold) position

Cost of apartment lighting for five years		Assumptions: • 1 kWh costs \$ 0.15 • Lighting on 4 h/day	
	Incandescent	Compact Fluorescent	
Туре	75W	22W	
Usage	0.075*7300 h = 547kWh	0.022*7300 h = 160 kWh	
Operating cost	547*\$0.15 = \$82	160 *0.15 = \$24	
Investment	6*\$0.50 = \$3	\$3	
Total cost	Total cost \$85		

Cost of common area lighting for one year		Assumptions: • 1 kWh costs \$ 0.15 • Lighting operates 24/7	
	Incandescent	Compact Fluorescent	
Туре	75W	22W	
Usage	0.075*8760 h = 657kWh	0.022*8760 h = 191 kWh	
Operating cost	657*0.15 = \$98	191 *0.15 = \$29	
Investme	nt 8* \$0.50 = \$4	\$3	
Total cost \$102		\$ 32	

sage Patterns	100 Watt Bulb	75 Watt Bulb	25 W fluorescent	20 W fluorescent
4 hours per day nnual cost of lectricity + eplacement bulbs	\$131 + 6 x .50 = \$134	\$98.55 + \$3 = \$ 101.55	\$32.85 + \$4 = \$36.85	\$26.25 + \$4 = \$30.25
2 hours per day	\$65.50 + 1.50	\$49.25 + \$1.50	\$16.40 + \$4	\$13.10 + \$4
	= \$67.00	= 50.75	= \$20.40	= \$17.10
hours per day	\$32.25 + \$1.00 = \$33.25	24.50 + 1.00 = \$25.50	\$8.20 + \$4 = \$12.20	\$6.50 + \$4 = \$10.50
hours per day	\$16.00 + .50	\$12.25 + .50	\$4.00 + \$4	\$3.25 + \$4
	= \$16.50	= \$12.75	= \$8.00	= \$7.25
hour per day	\$5.40 + 50	\$4.10 + .50	\$1.40 + \$4	\$1.00 + \$4
	= \$5.90	= \$4.60	= \$5.40	= \$5.00

Why power vented or sealed combustion systems?

- Can adjust combustion efficiency
- Larger ones have multiple firing rates
- Overall better insulated equipment
- Reduced draft losses on off cycle
- More fuel converted to heat in equipment
- Longer life
- Fewer pieces of equipment

How to read gas meter to check firing rate

- Find the meter for the combustion appliance
- Look at it while the appliance is off and on
- Note the settings for cubic feet, tens of cubic feet, and hundreds of cubic feet
- While appliance is running, clock usage for one minute, or note time it takes to consume a set amount of cubic feet
- Check it a few times for accuracy

LANDMARK@EST!

Firing rates for multiple gas boilers

- Manually shut of all boilers but one
- Run boiler on manual

UA

- Check firing rate at meter
- Repeat steps with each boiler
- This is seldom done in factory or by service personnel; when questioned, it gets service people upset as most don't know how to do it

NDWARK ESTI	CPC	The INSTITUTE for SUSTAINABLE CITIES	
	the Community Preservation Corporation		Steven Winter Asso

How to check firing rate(s) for oil fired appliances

- Procure, read, and follow the instructions
- Follow burner and boiler manufacturer's recommendations
- Call manufacturers if you have questions
- Note the exact firing rate and firing pattern of the flame (solid, semi-solid, hollow, etc.)
- Firing rate also depends upon oil pressure
- Ask service people what the firing rate is

CPC

LANDWARK WEST!

How important is combustion efficiency?

- It tells you how efficiently your equipment is running
- If taken regularly, it can be a great diagnostic tool for performance
- It increases awareness of staff in combustion appliance efficiency
- It is a valuable safety tool to ensure that products of combustion are not entering living space

LANDWARK WEST!

LANDMARK@EST!

Where to test for combustion efficiency

- Typically, taken 6-12" from the beginning of the flue piping as gasses exit the appliance
- $5/_{16}$ " hole in a straight run of flue pipe
- All tests examine gasses as they leave the combustion appliance
- Below the diverter in atmospheric gas equipment

Different types of Ventilation equipment

- Mechanical Ventilation with roof fans (exhaust fans) is the most common type.
- Supply and exhaust system

CPC

LANDWARK WEST!

Natural ventilation: no mechanical ventilation system

- This is the volume of air that escapes the building in an hour.
- Typical ranges in existing buildings: 0.3 to 1.0 ac/hour
- ASHRAE requirements for NEW residential construction=0.35

CPC

LANDWARK WEST!

LANDMARKWEST!

Is your ventilation system properly sized? An oversized exhaust fan system will "pull" more air than necessary= energy waste With an undersized exhaust fan system contaminated air will remain in the building with risks of condensation, proliferation of germs and mold problems.

Is your ventilation system properly sized? Cont.

- Ventilation capacity of an exhaust fan is measured in CFM (Cubic Feet per Minute).
- In a Multi-family building, the average installed ventilation requirement is 100CFM per kitchen
- In a Multi-family building, the average installed ventilation requirement is 50CFM per bathroom

CPC

Leakage a	at Sheetrock	Connection
		Leakage Pathway
Assuming a 1	/16" gap along perir	neter (red):
$8 \times 8 \text{ duct} \rightarrow 2$ 6 x 6 duct $\rightarrow 2$	2.0 square inches of le 1.5 square inches of le	eakage area per exhaust grille eakage area per exhaust grille
LANDWARK ESTI		Par INSTITUTE (ar SUSTAINABLE CITIES con unaution of warms and

Light or motion sensitive thermostats

- Great for electrically heated buildings
- Should be performed as apartments become vacant
- Best if residents don't know

CPC

LANDMARK WEST

- Probably not cost effective by themselves
- Include sealing drafts/reducing stack effect
- Check a few manufacturers—freebies?

Recommended VOC-Lin	mits
 Coatings cont. 	
 Primers, Sealers, and Undercoaters 	200
 Quick-Dry Enamels 	250
 Quick-Dry Primers, Sealers, and Undercoaters 	200
 Recycled Coatings 	250
 Roof Coatings 	50
 Roof Primers, Bituminous 	350
 Rust Preventative Coatings 	400
 Shellac 	
 Clear 	730
 Pigmented 	550
 Specialty Primers 	350
 Stains 	250
 Stains, Interior 	250
 Traffic Coatings 	150
 Waterproofing Sealers 	250
 Waterproofing Concrete/Masonry Sealers 	400
 Other Coating Types (not included in above) 	250
	Channe Millione Associates - Las

Recommended VOC-Limits • Sealants • Architectural 250 g/l • Architectural – Nonporous 250 g/l • Architectural – Porous 775 g/l • Other 750 g/l

